
  INTRODUCTION 
  Currently the broiler production sector is facing 

various health challenges including immune-related 
disorders (Knowles et al., 2009) and enhanced disease 
susceptibility (Huff et al., 2002). As a consequence 
of prolonged selection for enhanced broiler growth 
through broiler breeding programs, broilers face re-
duced immune functioning (Leshchinsky and Klasing, 
2001), and likely, in combination with the type of hous-
ing, this may underlie the high prevalence of infectious 
diseases and consequently the frequent use of antibiot-
ics. On the other hand it is feasible to breed broilers for 

enhanced innate immune reactivity that may combat 
infection (Swaggerty et al., 2009). 

  Transgenerational epigenesis is a promising area of 
interest. However, in poultry, transgenerational effects 
on (especially innate) immunity have not been explic-
itly investigated in depth before. Here we investigated 
literature for evidence of these effects and whether these 
effects have potential to maintain or improve health of 
broilers. 

  In this literature study, we address the following 4 
topics. First, we define epigenesis and transgenerational 
epigenesis. Second, we summarize literature on trans-
generational epigenetic mechanisms, with emphasis on 
immune responses. Third, we illustrate transgenera-
tional epigenetic phenomena. Finally, we propose types 
of studies that could be performed to 1) identify trans-
generational effects on innate immunity and 2) modu-
late the parental (especially mother) birds such that 
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  ABSTRACT   Transgenerational epigenetics is becom-
ing more and more important for understanding the 
variation of physiological responses of individuals to 
the environment and the inheritance of these responses 
based on all mechanisms other than the actual DNA 
nucleotide sequence. Transgenerational epigenetics is 
the phenomenon that the information of the environ-
ment of (usually) a female animal is translated into 
memory-like responses preparing the offspring. As a 
consequence, individuals of the next generation may 
show different phenotypic traits depending whether 
their mothers were kept under different environmental 
conditions. This may result in either positive or nega-
tive effects on the next-generation individuals, which is 
different from individuals from mothers that have been 
kept in a different environment. Transgenerational epi-
genetic effects have been proposed and indicated for 
specific immune (T cell and antibody) responses (es-
pecially in mammals, but also in birds) and innate im-
munity (nonvertebrates), but surprisingly very little is 
known of transgenerational effects on innate immunity 

in chickens. Given the short lifespan of the chicken and 
therefore the likely dependence of chicken on innate 
immune mechanisms, more attention should be given 
to this arm of immunity and mechanisms of inheritance 
including transgenerational effects that can be initiated 
in the breeder generation. In addition, it is becoming 
evident that innate immunity also underlies metabolic 
disorders in broilers. In the current paper, we will argue 
that although very little is known of transgenerational 
effects of innate immunity in poultry, more attention 
should be given to this type of study. We will illustrate 
examples of transgenerational epigenetics, and finally 
propose strategies that should reveal the presence of 
transgenerational epigenetic effects on innate immunity 
in chickens and strategies to modulate breeder birds 
such that these effects positively affect innate immuni-
ty of broilers. It is suggested that a mismatch between 
breeder environment and broiler environment may ac-
count for unwanted effects of innate immunity in the 
broiler. 
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transgenerational epigenetic effects could enhance the 
health status of broilers. We speculate that a mismatch 
between housing and feeding management of the broiler 
breeder and that of the broiler may underlie health 
problems of the broiler based on misdirected transgen-
erational epigenetic information. This literature study 
will provide a definition of transgenerational epigenetic 
effects and transfer mechanisms, including an overview 
of reported examples. Based on these findings, we pro-
pose future directions, with a focus on innate immunity.

Avian Innate Immune System  
and Its Importance

Roughly 98% of all multicellular organisms possesses 
an innate immune system (Kogut, 2009). It is hypoth-
esized that chickens use the innate immune system to a 
greater degree than the adaptive immune system based 
on specific T cells and specific antibodies (Lee, 2006; 
Klasing, 2007). In addition, the short life of most broil-
ers harvested for food (approximately 6 wk) limits the 
time available for full adaptive immune system devel-
opment. This underscores the importance of the innate 
immune system in broilers.

The 3 hallmarks of the innate immune system are: 
rapid action, limited duration, and limited specific-
ity (Klasing, 2007; Kogut, 2009). The innate immune 
system consists of various cell types: monocytes/mac-
rophages, natural killer (NK) cells, heterophils, and 
various soluble components such as natural antibodies 
(NAb), defensins, and various complement cascades 
(He et al., 2003; Parmentier et al., 2004; Bar-Shira and 
Friedman, 2006; Rogers et al., 2008; Nerren and Kogut, 
2009; Sjöberg et al., 2009). Although there are many 
cells involved in innate immunity of vertebrates, they 
can all be functionally triggered by microbe-associated 
molecular patterns (MAMP). Microbe-associated mo-
lecular patterns are life-cycle essential (and thus con-
served) structures of microbes. These structures are 
recognized by pattern recognition receptors, which are 
expressed by all (innate) immune cells. This enables the 
host to respond quickly to a wide range of microbes/
pathogens (Kumar et al., 2011).

The chicken’s innate immune system is already pres-
ent at hatch, but is not fully functional yet. For ex-
ample, heterophils become only fully functional after 
2 to 3 wk, but are also suggested to play an important 
protective role in the neonate (Friedman and Bar-Shi-
ra, 2005; Swaggerty et al., 2009). The NK cells were 
suggested to be important in mucosal immunity where 
they are almost solely located (Rogers et al., 2008).

During the development of the innate immune sys-
tem, and the functional absence of a specific immune 
system, maternal antibodies (mAb) transferred via 
yolk and albumen are present to protect the hatchling 
(Klipper et al., 2004; Friedman et al., 2012). After 2 wk 
of life, mAb are no longer detectable in significant levels 
(Grindstaff et al., 2003) and adaptive immunity by the 

chick itself is being developed (Bar-Shira et al., 2003). 
However, it takes at least 3 to 4 additional weeks for 
the adaptive immune system to become fully functional 
(Lammers et al., 2010). Therefore it is believed that 
during the first 6 wk of life the chicken mainly relies on 
its innate immune system and mAb, although currently 
applied vaccination strategies in ovo and in the first 
week of life indicate that protective adaptive responses 
can be induced. Additionally, direct and indirect influ-
ences of mAb on the development and functionality of 
the innate immune system (immunological imprinting) 
in chicken are suggested (Klipper et al., 2004), as is also 
proposed previously for mammals (Lemke et al., 2004). 
These aspects are further reviewed by Hasselquist and 
Nilsson (2009).

One of the key stimulators of immune and intestinal 
development in the chick is physical exposure to feed 
(Noy et al., 2001; Friedman and Bar-Shira, 2005). Feed 
withholding (up to 72 h) resulted in delayed develop-
ment of several physiological and immune parameters. 
Feed-withheld chickens needed at least 2 wk for full im-
munological recovery compared with chickens that were 
not feed-withheld (Bar-Shira et al., 2005).

Gut Microbiota

Immediately posthatch, a complex intestinal bacte-
rial population will develop (Bar-Shira et al., 2003). 
This intestinal microbiota is derived from the feed and 
the environment. As these bacteria produce hundreds 
of proteins that contribute to host physiology, but that 
cannot be produced by the host itself (Costello et al., 
2009), the host and its microbiota are regarded as a 
superorganism in which energy and metabolites can be 
exchanged and homeostasis is maintained by the im-
mune system (Cerf-Bensussan and Gaboriau-Routhiau, 
2010). This interplay between intestinal microbiota, 
(innate) immunity, health, and production has been 
investigated extensively. For instance, the cecal micro-
biota composition was associated with feed efficiency 
expressed by the feed conversion ratio (Dibner et al., 
2008; Torok et al., 2008; Stanley et al., 2012). Next to 
this, the gut microbiota plays an important role in pre-
venting colonization of pathogenic bacteria by nutrient 
and space competition and by secretion of antimicrobi-
als (Barnes, 1979).

In the first 2 wk of life, enterococci and lactobacilli 
are the dominant species in all segments of the broiler 
gastrointestinal tract (van der Wielen et al., 2000; Snel 
et al., 2002). Coliforms are also present in high numbers 
in the ceca (van der Wielen et al., 2000). In the sub-
sequent 3 to 4 wk of age, the microbial composition in 
the chickens intestines is unstable and fluctuating (den 
Hartog, 2013). This unstable period is accompanied 
with signs of mild inflammation. Multivariate analyses 
revealed that the intestinal microbiota composition cor-
related with mRNA levels of several pro-inflammatory 
cytokine genes. These data strongly suggest interplay 
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between microbiota composition and activity of the in-
nate immune system. In the adult chicken, a more or 
less stable composition is established, where lactobacilli 
are mainly present in the crop, duodenum, and ileum. 
Many unspecified obligate anaerobic bacteria are found 
in the ceca (Apajalahti, 2005; Gabriel et al., 2006).

The gut microbiota likely plays an essential role in the 
ontogeny of the vertebrate immune system (Macpher-
son and Harris, 2004), and also gut development was 
found to be highly associated with the presence and the 
composition of the microbiota (Maisonnier et al., 2003). 
For instance, development of the (adaptive) immune 
system and growth of the chicken hindgut (with high 
loads of microbes) was more sensitive to feed depriva-
tion than the development of the foregut immune com-
ponents (Bar-Shira et al., 2003, 2005; Bar-Shira and 
Friedman, 2006). Examples of effects of gut microbiota 
on innate immunity in vertebrates are an enhanced ac-
tivity of NK cells, granulocytes, macrophages, and cy-
tokine responsiveness (Mandel et al., 1989; Granholm 
et al., 1992; Tlaskalová-Hogenová et al., 2004; Farnell 
et al., 2006; Gabriel et al., 2006). However, many as-
pects of the interplay between microbiota and the im-
mune system are still unknown.

TRANSGENERATIONAL  
EPIGENETIC EFFECTS

In the next section we will 1) define transgeneration-
al epigenesis/epigenetic effects, 2) summarize examples 
and mechanisms of transgenerational epigenetic effects, 
and 3) provide examples of such effects.

Definition
Waddington (1957) was the first to define the term 

epigenetics. As a developmental/molecular biologist, 
Waddington focused on how gene expression patterns 
are modified during differentiation and development 
(Youngson and Whitelaw, 2008). However, evolutionary 
biology uses the term epigenetics as well to study the 
transfer of nongenetic information across generations 
(Youngson and Whitelaw, 2008), which has led to the 
formulation of several definitions and interpretations of 
epigenetics. For the sake of clarity, we define our work-
ing definition of transgenerational epigenetic effects 
based on a combination of definitions from Kouzarides 
(2007) and Youngson and Whitelaw (2008), with some 
minor adjustments as follows: transgenerational epi-
genetic effects are effects based on information 1) car-
ried by a cell/individual, but 2) that is not encoded by 
changes in the nucleotide sequence of the DNA and 3) 
that is transferred to successive generation(s) 4) with-
out the necessity of the original environmental stimu-
lus. Transgenerational epigenetic effects provide thus 
a life-course strategy for offspring, which is mapped 
by the parents, to meet the demands of the predicted 
environment in later life (Gluckman et al., 2007; God-

frey et al., 2007). As a consequence of this definition, 
the environment of the offspring may be such that the 
transgenerational epigenetic effects may also negatively 
affect the offspring.

Worldwide, roughly 60 billion broilers are kept on a 
yearly basis (Aviagen Group, Huntsville, AL). Approxi-
mately 460 million broiler breeders are used to pro-
duce these numbers (calculated from Aviagen Group, 
Huntsville, AL), which means that one broiler breeder 
hen produces around 100 broilers per year. Therefore, 
even a small transgenerational epigenetic improvement 
of the broilers health via environmental modulation 
of the breeders can have a major impact on broilers. 
In addition, some transgenerational epigenetic effects 
last for more than one generation, thereby making the 
grandparents also key factors in the epigenetic process.

Mechanisms and Examples  
of Transgenerational Epigenetic Effects

Mechanisms or routes of transfer of both transgen-
erational and nontransgenerational epigenetic informa-
tion (i.e., within one generation) are summarized in 
Table 1. For readability, these mechanisms will from 
now on be referred to as epigenetic mechanisms regard-
less of inheritance.

Molecular epigenetic mechanisms are DNA modifi-
cations (e.g., DNA methylation, DNA acetylation), 
histone modifications (e.g., acetylation), and exchange 
associated with altered chromatin structure and non-
coding RNA and microRNA (miRNA). These mech-
anisms are all related with the accessibility to DNA 
introns and generally involved in cell differentiation 
during ontogeny and tissue development. These epigen-
etic mechanisms have been studied extensively, though 
are not always understood completely. Some basic prin-
ciples have been clarified: unmethylated CpG-islands 
(DNA containing many C and G nucleotides) at pro-
moter regions were found to be accessible for transcrip-
tion, whereas heavily methylated CpG-islands were 
found to be inaccessible for transcription (Korte et al., 
2005), indicating that the degree of methylation de-
termines the degree of transcription (Jones and Takai, 
2001). The degree of transcription of CpG-islands was 
also associated with structural chromatin changes: eu-
chromatin and heterochromatin, respectively (Delcuve 
et al., 2009; Carson et al., 2011).

These molecular mechanisms are suggested to be 
underlying mechanisms in epigenetics/meiotic transfer 
of information (parent to offspring), but the majority 
of research is focused on epigenesis/mitotic transfer of 
information within an individual (cell to cell). As men-
tioned before, we will use the term transgenerational 
epigenetic effects only for information transferred from 
parent to offspring. However, epigenesis (cell to cell 
transfer within one generation) does illustrate that mo-
lecular epigenetic mechanisms do occur in innate im-
mune cells as well. Epigenesis regulates gene expression 
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independently of DNA nucleotide sequence in healthy 
individuals as often investigated in murine or human 
cells, for example to keep intestinal immune homeo-
stasis, to generate oral tolerance, or to acquire trained 
immunity (Takahashi et al., 2009; Kleinnijenhuis et al., 
2012; Martino and Prescott, 2013). Kleinnijenhuis et al. 
(2012) showed that stimulation of monocytes resulted 
in nonspecific protection from reinfection via epigenetic 
reprogramming, known as trained immunity. Conse-
quently, trained immune cells have a memory for innate 
host defense (Netea et al., 2011). Additionally, epigen-
esis is also involved in diseases [i.e., allergies, asthma, 
airway inflammation, cancer, metabolic, and autoim-
mune disease (Godfrey et al., 2007; Zhu et al., 2010; 
Carson IV et al., 2011; Brand et al., 2012)].

Next to the molecular routes of epigenetic mecha-
nisms on the DNA level, information from one gen-
eration to the other can also be transferred by soluble 
components present in the uterus or the egg, such as 
maternal antibodies (Grindstaff et al., 2003; Lemke et 
al., 2004), hormones, and other components (Groothuis 
et al., 2005; Nätt et al., 2009; Ho et al., 2011).

In addition, sperm properties (Du Plessis et al., 2010; 
Ng et al., 2010), oocyte and sperm RNA (Rassoulzade-
gan et al., 2006; Gluckman et al., 2007) are routes for 
transferring information. Also quantity and quality of 
maternal mitochondria can transfer information from 
one generation to the next generation (Gluckman et 
al., 2007). Paternal mitochondria are likely not a route 
because they are degraded during spermatogenesis or 
are lost in the fertilized oocyte (McConnell, 2006).

Although the maternal microbiota is not necessarily 
transferred to the next generation (microbes can die or 
loose attachment to the eggshell), the maternal gut mi-
crobiota can act as a transfer mechanism as well (Cook 
et al., 2005; Soler et al., 2011).

The listed epigenetic transfer mechanisms also show 
us why poultry are good models for transgenerational 
epigenetic studies. The eggs can be isolated and the 
hatchling can be raised without direct influence of par-
ents (Gluckman et al., 2007; Nätt et al., 2009). Al-
though the egg provides an easier model for studying 
epigenetics, it should be realized that the composition 
of eggs differs between chicken breeds, between hens of 
the same breed, and even between eggs of the same hen 
(Vieira and Moran, 1998; Silversides and Scott, 2001; 
Friedman et al., 2012). Maternal diets were also found 
to influence egg composition (Surai et al., 2003; Kara-
das et al., 2005).

Noteworthy to mention is the suggestion that trans-
generational epigenetic effects, especially methylation 
of DNA, were essential in the domestication and selec-
tion of the modern chicken (Nätt et al., 2012).

Examples of Transgenerational  
Epigenetic Effects

Only a very limited number of articles describe trans-
generational epigenetic effects in birds and even fewer 

describe transgenerational epigenetic effects on innate 
immunity in poultry.

A notable observation that suggests transgenera-
tional epigenetic effects was done by Lindqvist et al. 
(2007) and later repeated by Nätt (2008) and Nätt et 
al. (2009): 2 groups of laying hens were raised with 
an unpredictable or predictable light regimen. Birds 
with an unpredictable regimen showed different feeding 
behavior than birds with a predictable regimen. The 
offspring of these 2 groups showed the same directed 
feeding behavior as their parents, even though both 
groups experienced a normal predictable light regimen. 
The offspring of birds that underwent the unpredict-
able light regimen was also found more competitive 
and grew faster than the control group. Immunoglobu-
lin gene expression was found to be downregulated in 
birds with the unpredictable light regimen as well as 
in their descendants (Nätt et al., 2009). Regulation of 
these genes, which are involved in both neural develop-
ment (Huh et al., 2000) and immunity, suggests that 
also immune parameters can be epigenetically trans-
ferred to the next generation (Nätt et al., 2009). The 
estradiol levels in the eggs from hens that underwent 
the unpredictable light regimen were higher than in the 
eggs from birds that underwent the predictable light 
regimens (Nätt, 2008; Nätt et al., 2009). Estradiol lev-
els have been related to feeding behavior (Eckel, 2004), 
and therefore, when transferred between generations, 
may be an explanation for these observations (Nätt, 
2008; Nätt et al., 2009).

During life, broiler breeders experience chronic hun-
ger. They receive 50 to 80% feed restriction during 
their growth period and up to 50% feed restriction 
during adulthood (Mench, 2002). In line with this, a 
study was done on broiler breeders by Van der Waaij 
et al. (2011). Normal feed-restricted broiler breeders 
were found to produce offspring that were significantly 
lighter at slaughter than offspring of breeder hens fed 
ad libitum (Van der Waaij et al., 2011). Offspring of 
ad libitum fed hens had also relatively less abdominal 
fat at slaughter (van der Waaij et al., 2011), which 
was also observed in other animals (Dwyer et al., 1994; 
Zhu et al., 2004). However, it cannot be determined 
whether observed differences are due to an undernutri-
tional state of the parental birds or due to nutrient de-
ficiencies in the diet. In mammals, undernutrition pro-
motes the dominance of T helper 2 cells over T helper 
1 cells and reduces the development of regulatory T 
cells (De Rosa et al., 2007; Kau et al., 2011). Neu-
trophil, monocyte, and macrophage activation are also 
negatively influenced by under nutrition (La Cava and 
Matarese, 2004). Unfortunately, no immune parameters 
were measured in the study of Van der Waaij et al. 
(2011), but their results suggested detrimental effects 
of broiler breeders kept under normal restricted feeding 
and also suggested a transgenerational epigenetic effect 
on broilers.

In another study, broiler breeders were fed a control 
diet or an improved diet (control diet supplemented 
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with vitamins and minerals), whereas offspring of these 
2 groups received the same control diet. It was found 
that offspring of the improved diet group showed al-
tered gene expression in intestinal development and 
immune functioning (Rebel et al., 2004, 2006). How-
ever, no differences in performance were found between 
the 2 offspring groups (Rebel et al., 2006). A similar 
experiment, where broiler breeders were fed a control 
diet or a deteriorated diet (control diet supplemented 
with mycotoxins of the fungus Aspergillus), reported 
altered activity of macrophages and different blood lev-
els of specific antibodies in the offspring (Qureshi et 
al., 1998). These studies highlight the opportunities to 
epigenetically influence the immunity of offspring via 
parental nutrition.

Maternal antibodies, although their presence in broil-
ers is limited to mainly the first 2 wk of life (Hamal et 
al., 2006), may exert a lifelong determinative influence 
on the neonatal immune system, which can dominate 
over seemingly genetic predispositions (Grindstaff et 
al., 2003; Lemke et al., 2004). The specific anti-idiotypic 
binding of the mAb may have strong immunoregulatory 
properties and influence the emergence of the available 
specific neonatal B cell binding repertoire (Wikler et 
al., 1980; Montesano et al., 1999; Fink et al., 2008), and 
likely also the neonatal T cell repertoire (Martinez et 
al., 1986; Rubinstein et al., 1982). Maternal antibodies 
can therefore be seen as nongenetic, information-bear-
ing molecules that transfer knowledge about the immu-
nologically relevant environment (antigenic specificities 
from microbes, feed components, and so on) gathered 
by the mother (Lemke and Lange, 1999; Lemke et al., 
2004) to her offspring. As an example for poultry, BSA-
specific mAb induced in mother layer hens blocked the 
induction of oral tolerance to BSA in newly hatched 
chicks (Klipper et al., 2004). Besides mAb, antimicrobi-
als and other egg components are likely to be (partly) 
functional in the neonatal intestine for several days. 
One of these antimicrobials, avidin, was suggested to 
guide the gut microbiota composition (Klasing, 2007). 
Avidin is an acute phase protein, which is present in 
the egg albumen (Cucco et al., 2010). It is bacteriostat-
ic and inhibits pathogenic bacterial growth (Klasing, 
2007). A second transgenerational epigenetic mecha-
nism for microbiota inheritance is the transfer of mi-
crobiota via the eggshell to young chickens (Grönlund 
et al., 1999; Cook et al., 2005). Soler et al. (2011) in-
vestigated the relation between bacterial load on shells 
and the innate immune system in 29 bird species. A 
negative association between (parental titers of) natu-
ral antibodies (NAb) and bacterial density was found 
in 19 bird species (including poultry), revealing that a 
strong parentally derived immune system (in this case 
NAb) benefits the reduction of the vertical transmis-
sion of pathogens (Soler et al., 2011). Finally, transgen-
erational epigenetic effects on immune responses can be 
indirectly interpreted from studies on the heritability 
of NAb levels and specific antibody (SpAb) responses 
that were estimated in 2 chicken lines divergently se-

lected for specific antibody levels against SRBC be-
cause maternal environmental effects significantly in-
fluenced the heritability of both NAb and SpAb levels 
in subsequent generations (Wijga et al., 2009).

As indicated above, evidence for transgenerational 
epigenetic effects on innate immunity is mostly lacking 
in broilers, but well provided by studies with insects. 
Insects lack an adaptive immune system and therefore 
rely completely on innate immunity, which is proposed 
to be the evolutionary root of the vertebrate’s immune 
system, based on several immunological homologies 
(Pölkki et al., 2012; Arvantis et al., 2013). Transgen-
erational epigenetic effects on the offspring’s innate im-
mune response were found in various insect species and 
resulted in better immunological functioning after pa-
rental exposure to pathogens or MAMP, but the molec-
ular mechanisms of transgenerational epigenesis remain 
to be elucidated (Little et al., 2003; Sadd et al., 2005).

Taken together, although many aspects are still un-
known, based on the abovementioned studies, it is like-
ly that transgenerational epigenetic mechanisms will 
affect innate immune responses in broilers also. Note 
that innate responses are frequently generated via or 
are related to dietary components and their effects on 
the microbiota.

CONCLUSIONS AND FUTURE DIRECTIONS
Transgenerational epigenetic effects are gaining in-

creased awareness in the field of broiler husbandry as a 
new tool to maintain or improve health, or alternatively 
to prevent health problems. They may explain varia-
tion within treatment groups in various experimental 
and observational studies. However, hardly any study 
actually investigates these effects. We performed this 
literature study as a first step to summarize what has 
been described previously about transgenerational epi-
genetic effects and to examine their potential as a tool 
to improve innate immunity in broilers. Transgenera-
tional epigenetic effects are of major interest because 
one broiler breeder hen produces approximately 100 
broilers, thereby potentially having a large impact on 
the broiler generation. With respect to transgeneration-
al epigenetic effects on innate immunity, the immune 
strategy of broiler may depend on innate responses. Ge-
netic selection of parental broilers with improved innate 
immune responsiveness was proposed to reduce infec-
tions by foodborne pathogens (Swaggerty et al., 2009). 
Innate immunity, however, is not only an important 
first line of defense and a prerequisite for good specific 
immune responses, but on the other hand also may un-
derlie various metabolic and autoimmune diseases that 
seemingly are not related with innate immunity but are 
characterized by a status of low chronic inflammation 
such as obesity and type II diabetes (Tanti et al., 2013) 
and type I diabetes (Wen et al., 2008) in humans. It has 
been postulated that broilers are also characterized by 
a status of low chronic inflammation in the absence of 
infections as well (Balog et al., 2000; Niewold, 2007). 
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In broilers, inflammation appeared to affect or underlie 
processes such as growth and ascites, lameness (Ca-
plen et al., 2013), and white striping of breast muscles 
(Kuttappan et al., 2013). Antiinflammatory interven-
tion could increase growth (Niewold, 2007) and reduce 
local and systemic innate immunity in the absence of 
infections (Munyaka et al., 2012), but was not always 
consistently successful (Balog et al., 2000). It is tempt-
ing to postulate that the mismatching of breeder and 
broiler management (e.g., restricted versus ad libitum 
feeding) underlies health problems of the broiler. The 
broiler may not be transgenerational-epigenetically 
prepared for its environment. In addition, transgenera-
tional epigenetic transfer of the maternal microbiota 
to the broiler is impeded due to artificial brooding and 
treatment of eggs with formalin, which may affect the 
development of innate immunity and the establishment 
of the gut microbiota in a negative fashion.

To further elaborate transgenerational epigenetic ef-
fects on innate immunity in poultry, we propose the 
following research strategies: 1) identification of in-
nate (and specific) immune responses prone to trans-
generational epigenetic effects, 2) modulation of trans-
generational epigenetic effects on the innate immune 
system in broilers, for instance by dietary intervention 
or, more indirectly, by intervention of the microbiota 
composition of breeders, 3) unravelling mechanisms of 
the interrelationships between innate immunity, diet, 
and intestinal microbiota in both breeder and broiler 
birds, and the consequences of intervention for broilers’ 
health and production. Experimental approaches would 
include 2 × 2 factorial designs to measure the effects 
of modulation of maternal innate immunity on innate 
immunity and health of broilers kept in the same and 
another environment (including diet and microbiota). 
Innate parameters to be studied are levels of natural 
(and specific) maternal antibodies in the egg and neo-
nate, levels of complement components from all cas-
cades, inflammatory and anti-inflammatory cytokines, 
hormones, antimicrobials and defensins in breeders, 
eggs, and hatchlings, but also the composition of the 
maternal intestinal microbiota in and on the egg, and 
the consequences of modulation of the breeder hen for 
(innate) immune reactivity of the broiler. We suggest 
(dietary) interventions to modulate the innate immune 
system of breeders as a likely start for investigation. Di-
etary innate immune-stimulating (i.e., an inflammatory 
environment in the breeder) or inflammation-suppress-
ing treatments of broiler breeders should reveal effects 
on type and levels of innate immune responses and mi-
crobiota composition of the offspring broiler generation 
and their consequences for resistance to both infectious 
diseases as well as metabolic disorders.

Transgenerational epigenetic effects have often been 
mentioned in the broiler production sector, but there 
are only few scientific studies about these effects. In 
this study, we mainly focused on broilers, but the scar-
city of information forced us to also use studies of other 

species. Based on these results, we conclude that much 
more knowledge and therefore studies addressing trans-
generational epigenetic effects on innate immunity in 
chickens is desired, as there are precedents that indi-
cate that such mechanisms do also operate in birds and 
may account for current health problems in broilers. 
Improving innate immunity of broilers by modulating 
breeders will lead to less use of antibiotics and due 
to the interplay with specific immunity will likely im-
prove specific immunity (vaccine responses) as well. In 
this perspective, innate vaccination programs in broiler 
breeders with vaccines (containing pathogens) and ad-
juvants (often mimicking MAMP) may have a signifi-
cant impact on the immune functioning of broilers. On 
the other hand, it should be taken into account that an 
enhanced status of the innate immune system may ac-
count for current health problems in broilers.
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